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MONOCHROMATIC DIRECTED WALKS 
IN ARC-COLORED DIRECTED GRAPHS 

N. ALON (Cambridge, USA) 

All graphs considered here are directed and have no loops. For a directed graph 
D, let V(D) denote the set of vertices of D, 2E(D) its set of arcs, and z(D) the chromatic 
number of D. D is symmetric iff (x, y)~E(D)~(y,  x)EE(D). A directed walk of 
length k in D is a sequence o f k  arcs (not necessarily distinct), e~, e2, ..., ek such that 
the initial vertex of ei+l is the terminal vertex of e, for i=  1, 2 . . . .  , k -  1. The directed 
walk above is called a directed path if all the k + 1 vertices incident with its arcs are 
distinct. An arc-coloring of D is a mapping of 2E(D) into a set C of colors. A sub- 
graph of D is monochromatic if all its arcs have the same color. 

Gallai [5] and Roy [7] proved independently the first result connecting the chro- 
matic number of a directed graph with the maximal length of a directed path in it; 
Every directed graph D contains a directed path of length z ( D ) - I .  Chwital [2] 
noticed that the result of Gallai and Roy implies the following extension of a result of 
Busolini [1]: 

Trr~OREM A (Chvfital). Let D be a directed graph and let k, r be positive integers 
such that z(D)>k ' ;  then in any arc-coloring of  D with r colors, D contains a mono- 
chromatic directed path (and hence a monochromatic directed walk) of  length k. 

In view of this theorem, the following two definitions seem natural: 

D~FINmON 1. An arc-coloring of a directed graph D is k-free (k~_2) i fD does 
not contain a monochromatic directed walk of length k (i.e., if no directed path of 
length k and no directed cycle whatsoever is monochromatic). 

Define also: 

Ck(D) = min{r: there exists a k-free arc-coloring of D with r colors}. 

DEFINITION 2. For k, h_~2 

_Ck(h)=min {C,(D): D is a directed graph and x(D)=h}, 

C~(h)=max {Ck(D): D is a directed graph and x(D)=h}. 

To avoid trivialities we shall consider from now on only directed graphs D for 
which z(D)_~2, i.e., E(D)~0.  By Theorem A, for every directed graph D and 
every k ~ 2 :  
(1) Ck(D) ~= [logk z(D)], 
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where [y] denotes the smallest integer =>y, and thus 

(2) Ck(h) >= C_k(h) >= [logk hi, 
for all k, h_->2. 

In this paper we determine Ck(h ) exactly for all k, h=>2, and show that 

[loge hi = C_k(h) ~- Ck(h) ~-- [Iogk h+lOgk 1oge h+4]. 

We also show that if D is symmetric then Ck(D)= Ck(Z(D)). 
We begin with the following definition: 

DEFINITION 3. Let k, r be two positive integers, k_->2. Let D be a directed graph, 
and M a k-free arc-coloring of D with r colors 1, 2 . . . .  , r. For vC V(D) and 1 <=i~_r, 
denote by IM(v, i) the maximum length of a monochromatic directed walk of color i 
beginning at v. (lM(v, i )=0  if no such walk exists.) With each vertex v of D associate 
the vector IM(V)=(IM(V, 1), IM(v, 2), ..., IM(v, r)). (We shall usually omit the index 
M, whenever there is no danger of confusion.) 

Note that each component of IM(v) is a nonnegative integer smaller than k, 
since M is k-free. 

The following lemma is a trivial consequence of Definition 3: 

. LI~MMA 1. Let D be a directed graph, and M a k-free arc-coloring of D with r 
colors 1, 2, ..., r. Suppose (v, v')CE(D). I f  the color of (v, v') under M is i, then: 

0 < l (v, i). 

REMARtC 1. Suppose D is a directed graph, and M is a k-free arc-coloring of D 
with colors 1, 2, ..., r. If v, v' are adjacent vertices of D, then l(v) ~ l(v'), by Lemma 1. 
Thus, the mapping v~l(v)(v~ V(D)) is a proper vertex-coloring of D, with at most 
k' different colors. Thus x(D)-~k ". This yields a proof of inequalities (1) and (2) 
which does not depend on Theorem A. 

D~FINTIO~ 4. For positive integers k, r let P(k, r) denote tile set of all functions 
b: {1, .... r}-~(0, . . . , k - I } .  If b, c~P(k, r) write b ~ e  if b(t)<-e(t) for all 
t, l~t~-r. Clearly ~ is a partial order on P(k,r). An AC(k, r) is an antichain in 
/~(k, r), i.e,, a set FoP(k,  r) such that for every two vectors (=functions) b, eCF 
there are indices l~s , r~=r  such that b(s)<e(s) and e(t)<b(t). 

We denote by N(k, r) the maximal cardinality of an AC(k, r). 
E. Sperner [8] proved: 

N(2, r) = r ' 

and De Bruijn, Tenbergen and Kruywijk [3] proved the following generalization of 
Sperner's result: 

TI~ognM B (De Bruijn, Tenbergen and Kruywijk). N(k, r) is the number of all 
vectors bC P(k, r) satisfying 

,Z= b(O = ( k - - , ) r  , 
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i.e., N(k, r) i s  the t o e ,  dent of  x t(k-1)rm in 

(1 + x + x~ + . . . + x~-O ". 

As ( l+x+i. .+xk-~)=(1--xk)/(1--x) ,  it follows easily that 

'p/~J ( ~ ) ~ r + p - k i - l ]  [ 1  ] 
N ( k , r ) = Z ( - 1 )  ~ ( r - 1  ) ,  where p =  ( k - 1 )  r .  

i=0  

We shall now establish an upper bound for Ck(D). 

LEMMA 2. I For every directed graph D and for every integer k_~2: 

(3) Ck(D ) ~ rain {r: N(k, r) >- z(D)}. 

PROOF. Given an integer r such that N(k, r)>=•(D), we shall exhibit a k-flee 
arc-coloring of  D with r colors. Choose an AC(k, r) {bl, b2 . . . .  , bz(v) } of  size z(D). 

Let 7: V(D)~{1, ." ,  z(D)} be a fixed proper vertex coloring of D. Define an 
arc-coloring M:  E(D)o{1 ,  ..., r} as follows: If (v, w)fiE(D), let 

m(v,  w) = min{t:  1 <= t <= r, b.~(v~(t) > b~(w)(t)}. 

(M(v, w) is well defined, since 7(v)#~(w), and {b~, ..., bz(D)} is an AC(k,r).)  
It remains to show that M is k-flee. Suppose (v0, vl), (vl, v2) . . . .  , (vm-1, vm) 

is a monochromatic directed walk of  length m in D, say, of  color i. By the definition 
of M, k>b~(vo)(i)>b~(~x)(i)>...>br(~)(i)>--O, and thus m<=k-1. Therefore M 
is k-free and (3) follows. [] 

Combining (1) and Lemma 2 we obtain: 

TI~OREM 1. For every directed graph D and every k->2: 

[logk z(D)] ~ Ck(D) ~ min {r; N(k, r) >- z(D)}. 

The next lemma shows that both bounds in Theorem 1 are best possible, and 
that the upper bound is attained whenever D is symmetric. 

LE~tA 3. Let h>=2 be an integer. 
(i) There exists a directed graph T with y~(T)=h such that 

(4) C~(T) = [log~ hl 
for every k~2 .  

(ii) I f  G is symmetric and X (G) = h, then 

(5) Ck(G) = min {r: N(k, r) >-" h}. 
for every k >= 2. 

PROOF. (i) Given h_->2, let T be a transitive tournament on h vertices, that is: 
V(T)={vl ,  v~, ..., vn}, and E(T)={(vi, vj): h>-i>j>=l}. Obviously x ( T ) = h  
and thus, by Theorem 1, for every k_~2, Ck(T)_->[logk hi. In order to establish (4) 
we shall exhibit, fo r  every k_~2, a k-flee arc-coloring of T with r colors, where 

(6) r = [logk h!. 
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Given k=>2, definer by(6). Obviously k'_->h. For l~_i~_h, let b~EP(k,r) be the 
k-ary representation of the integer i - 1 ,  i.e., bi=(~t, ..., ~,), where 0~_~t~<k for 

r 

l~_v<=r and i - 1  = ~ v k  ~-1. (Note that 0 < - i - l < k ' . )  Define a k-free arc- 
V = I  

coloring of Twith r colors 1, 2, ..., r exactly as in the proof of Lemma 2: 
For h>=i>.]>= 1, color the arc (v~, vi) of T with color s, where 

s = rain {t: 1 ~_ t ~_ r ,  b~(t) > hi(t)}. 

(Such an s exists since bl represents a larger number than b~.) The argument used in 
the proof of Lemma 2 shows that this coloring is indeed k-free. This establishes (4). 

(ii) Let G be a symmetric directed graph satisfying z(G)=h. By Theorem 1, for 
every k=>2, 

Ck(G) <~ rain {r: N(k, r) >-_ h}. 

In order to establish (5) we will show that for k->2, if there exists a k-free arc- 
coloring of G with r colors, then N(k, r)>=h. 

Given k-_>2, suppose M is a k-free arc-coloring of G with r colors I, ..., r. 
By Dilworth's Theorem (see [4]), the partially ordered set P(k, r) is the union of 
N(k, r) chains /-/1,//2, ..., HNtk, O. Define a vertex-coloring f :  V(G)-~{1, 2 . . . .  
..., N(k, r)} as follows: If vC V(G) let 

f(v) = min {t: 1 <: t <: N(k, r), Iu(v)CHt}. 

Since G is symmetric, Lemma 1 implies that if (v, w)EE(G) then neither Iu(v)~_ 
<=lM(w) nor l~(w)<-l~(v) holds. This means that f (v)~f(w) and t h a t f i s a  proper 
vertex-coloring of G with N(k, r) colors. Thus N(k, r) >:h and (5) follows. [] 

Combining Lemma 3 and Theorem 1 we obtain: 

THEOREM 2. For every two integers k, h~:2: 

(7) C k(h) = [logk h], 

(8) Ck(h) = min {r: N(k, r) --> h}. [] 

R~MARK 2. We can prove that there are positive constants ct, c~., say c~= I and 
c~=4, such that: 

(9) rain {r: N(k, r) _-> h} ~_ [1ogk h + e~ log k logk h + c~l 

for every k, h:>2. 
This shows that Ok(h) is not very far from C__k(h) and thus the lower and upper 

bounds for Ck(D), given in Theorem 1, are quite dose. 
~l~e proof of (9) depends on the trivial estimate 

N(k, r) >-_ IP(k, r)l/((k-1) . r + l) _-> k'- l /r .  

We omit the detailed proof of (9), since it is rather lengthy and not very compli- 
cated. 

REMARK 3. It is well known that the problem of deciding whether the chromatic 
number of a given undirected graph G is greater than 3 is NP-Complete, even under 
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rather severe restrictions on G (see [6, p. 191]). Since ~ 2 ( 3 ) = 3 < 4 = ~ a ( 4 ) ,  part  (ii) 
of  Lemma 3 implies that the problem of  deciding whether C~(D)~_ 3 is NP-eomp!ete, 
even if  D is a directed symmetric graph. 

REMARK 4. Let  T be a transitive tournament on h vertices and let G be a complete 
symmetric directed graph on h vertices. By Lemma 3, for  every k=>2 

Ck(T) = c_C_~(h) <- Ca(h) = Ck(G). 

Clearly G can be obtained from T by adding h(h -1 ) /2  arcs, one at a time. I f  H"  
is obtained from H by adding one are, then dearly 

Ck(H) <- Ck(H') <= Ck(H)+ 1. 

It  follows that for every k, h>=2 and for every m satisfying C__k(h)~_m~_Ck(h), 
there is a directed graph D that satisfies x ( D ) = h  and Ck(D)=m. 
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