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MONOCHROMATIC DIRECTED WALKS
IN ARC-COLORED DIRECTED GRAPHS

N. ALON (Cambridge, USA)

All graphs considered here are directed and have no loops. For a directed graph
D, Iet V(D) denote the set of vertices of D, E(D) its set of arcs, and x (D) the chromatic
number of D. D is symmetric iff (x, y)EE(D)«<(y, x)€E(D). A directed walk of
length k in D is a sequence of k arcs (not necessarily distinct), ey, e, ..., €, such that
the initial vertex of e;, is the terminal vertex of ¢, for i=1, 2, ..., k—1. The directed
walk above is called a directed path if all the k+1 vertices incident with its arcs are
distinct. An arc-coloring of D is a mapping of E(D) into a set C of colors. A sub-
graph of D is monochromatic if all its arcs have the same color.

Gallai [5] and Roy [7] proved independently the first result connecting the chro-
matic number of a directed graph with the maximal length of a directed path in it;
Every directed graph D contains a directed path of length y(D)—1. Chvatal [2]
noticed that the result of Gallai and Roy implies the following extension of a result of
Busolini {1]:

TaeoREM A (Chviétal). Let D be a directed graph and let k, r be positive integers
such that y(D)=k"; then in any arc-coloring of D with r colors, D contains a mono-
chromatic directed path (and hence a monochromatic directed walk) of length k.

In view of this theorem, the following two definitions seem natural:

DeriniTION 1. An arc-coloring of a directed graph D is k-free (k=2) if D does
not contain a monochromatic directed walk of length & (i.e., if no directed path of
length k& and no directed cycle whatsoever is monochromatic).

Define also:

C.(D) = min{r: there exists a k-free arc-coloring of D with r colors}.

DeriNtTioN 2. For k, h=2
C.(h)=min {C;(D): D is a directed graph and x(D)=h},
C,(h)=max {C(D): D is a directed graph and x(D)=h}.
To avoid trivialities we shall consider from now on only directed graphs D for
which y(D)=2, ie., E(D)#0. By Theorem A, for every directed graph D and
every k=2:

M Ci(D) = [log, x(D)}
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where [y] denotes the smallest integer =y, and thus

2 Ci(h) = Cu(h) = [log, B},
for all k, h=2. _ .
In this paper we determine C,(h) exactly for all k, h=2, and show that

llog, h] = Ci(h) = Ci(h) = [log, h+log, log, h+4].

We also show that if D is symmetric then C,(D)=C,(x(D)).
We begin with the following definition:

DErFINITION 3. Let &, r be two positive integers, k=2. Let D be a directed graph,
and M a k-free arc-coloring of D with r colors 1, 2, ..., . For v€ V(D) and 1=i=r,
denote by Iy (v, 7) the maximum length of a monochromatic directed walk of color i
beginning at v. (I);(v, i)=0 if no such walk exists.) With each vertex v of D associate
the vector Ly(®)=(lu(v, 1), (v, 2), ..., Iy(v, r)). (We shall usuvally omit the index
M, whenever there is no danger of confusion.)

Note that each component of [,,(v) is a nonnegative integer smaller than k%,
since M is k-free.

The following lemma is a trivial consequence of Definition 3:

- Lemma 1. Let D be a directed graph, and M a k-free arc-coloring of D with r
colors 1,2, ..., r. Suppose (v, vYCE(D). If the color of (v,v") under M is i, then:

L', )< IM(Ua i),

. REMARK 1. Suppose D is a directed graph, and M is a k-free arc-coloring of D
with colors 1, 2, ..., r. If v, v’ are adjacent vertices of D, then I(v)>I(v’), by Lemma 1.
Thus, the mapping v—I(v)(v€ V(D)) is a proper vertex-coloring of D, with at most
k" different colors. Thus y(D)=k". This yields a proof of inequalities (1) and (2)
which does not depend on Theorem A.

DerINITION 4. For positive integers k, r let P(k, r) denote the set of all functions
b: {1,..,r}~{0, .... k—1}. If b,ccP(k,r) write b=c if b(t)=c(r) for all
t,1=t=r. Clearly = is a partial order on P(k,r). An AC(k,r) is an antichain in
P(k,r), ie,, aset FCP(k,r) such that for every two vectors (=functions) b, c¢F
there are indices 1=s,r=r such that b(s)<c(s) and c(¥)<b(?).

We denote by N(k, r) the maximal cardinality of an AC(k, r).

E. Sperner [8] proved:

r
~en = (7);
and De Bruijn, Tenbergen and Kruywijk [3] proved the following generalization of
Sperner’s result: : es

‘TreorEM B (De Bruijn, Tenbergen and Kruywijk). N(k, r) is the number of all
vectors bEP(k,r) satisfying

$00- [t
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ie., N(k,r) is the coefficient of x*®~Vr/2 jn
o (L+x+x24 .. 450
As (1 +x+ +x“‘1) a —,\")/(1 ~x), it follows easily that

Nk, 7) = 2( 1)'(]("“’ ki~ ] where p=[—§-(k-—1)r].

We shall now establish an upper bound for C,(D).
LEMMA 2. For every directed graph D and for every integer k=2:
[€)) C.(D) = min {r: Nk,r) = x(D)}

ProoF. Given an integer r such that N(k, r)=y(D), we shaill exhibit a k-free
arc-coloring of D with r colors. Choose an AC(k, r) {by, by, ..., byp)} of size x(D).

Let y: V(D)-{4, ..., x(D)} be a fixed proper vertex colonng of D. Define an
arc-coloring M: E(D)— {1 ., r} as follows: If (v, w)€E(D), let

Mo, w) = min{t: 1 =t =1, byy()) > by}

(M(v,w) is well defined, since y(@)#y(w), and {by, ..., by} is an AC(K, F).)
It remains to show that M is k-free. Suppose (o, vl), (vl, Us)y --es (Umpe1s Um)

is 2 monochromatic directed walk of length m in D, say, of color i. By the definition

of M, k>b7(,,o)(z)>by(,,1)(z)> =D, 5,y ({)=0, and thus m=k—1. Therefore M

is k-free and (3) follows. O v
Combining (1) and Lemma 2 we obtain:

THEOREM 1. For every directed graph D and every k=2:
flog, x(D)] = G (D) = min {r: N(k, 1) = x(D)}-

The next lemma shows that both bounds in Theorem 1 are best possible, and
that the upper bound is attained whenever D is symmetric.
LemMa 3. Let h=2 be an integer.
(i) There exists a directed graph T with y(T)=h such that
@ C,(T) = llog b1
Jor every k=2.
(i) If G is symmetric and x(G) = h, then
®) Ci(G) = min {r: N(k, ) = h}.
for every k=2.

Proor. (i) Given h=2, let T be a transitive tournament on & vertices, that is:
V(D)={vs, vs, ..., 1}, and E(T)={(v;, v)): h=i=j=1}. Obviously x(T)=h
and thus, by Theorem 1, for every k=2, C,(T)=[log, /]. In order to establish (4)
we shall exhibit, for every k=2, a k-free arc-coloring of 7" with r colors, where

(6) y = “.ng h]'
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Given k=2, define r by (6). Obviously k"=h. For 1=i=h, let b P(k,r) be the
k-ary representation of the integer i—1, i.e., b;=(x, ..., o), where 0=a,<k for

1=v=r and i-1 -—Z’oc k-1, (Note that 0=i—1<k") Define a k-free arc-

coloring of T with r colors 1, 2, ..., r exactly as in the proof of Lemma 2:
For h=i>j=1, color the arc (v;, v;) of T with color s, where

s=min {t: 1 =t=r b(i) > b;(O}.

(Such an s exists since b; represents a larger number than b ;) The argument used in
the proof of Lemma 2 shows that this coloring is indeed k-free. This establishes (4).
(ii) Let G be a symmetric dlrected graph satisfying y(G)=h. By Theorem 1, for
every k=2,
C(G) = min {r: N(k,r) = h}.

In order to establish (5) we will show that for k=2, if there exists a k-free arc-
coloring of G with r colors, then N(k, r)=h.
Given k=2, suppose M is a k-free arc-coloring of G with r colors 1,
By Dilworth’s Theorem (see [4]) the partially ordered set P(k, r) is the umon of
N (k r) chains Hy, Hy, ..., Hyg,,,. Define a vertex-coloring f: V(G)~{l1, 2, .
., N(k, r)} as follows: If vEV(G) let
f)=min {£: 1 = ¢ = N(k, 1), l(v)€H)}.

Since G is symmetric, Lemma 1 implies that if (v, w)€E(G) then neither I(v)=
=ly(W) nor ly(w)=ly(v) holds. This means that f(v)%f(w) and that fis a proper
vertex-coloring of G with N(k, r) colors. Thus N(k, r)=h and (5) follows. O

Combining Lemma 3 and Theorem 1 we obtain:
THEOREM 2. For every two integers k, h=2:

M Ci(h) = Tlog, b1,

® C.(h) =min {r: Nk, ¥) = h}. O

ReMARK 2. We can prove that there are positive constants ¢,, c,, say ¢;=1 and
c;=4, such that:

® min {r: Nk, r) = }i} = [log, h-+cq log log, h+c.l

for every k,h=2.

This shows that Ck(h) 1s not very far from C;(h) and thus the lower and upper
bounds for C.(D), given in Theorem 1, are quite close.

The proof of (9) depends on the tr1v1a1 estimate

Nk, r) = |P(k, Dl/((k—1) - 7+1) = k"Yr.

We omit the detailed proof of (9), since it is rather lengthy and not very compli-
cated.

Remark 3. It is well known that the problem of deciding whether the chromatic
number of a given undirected graph G is greater than 3 is NP-Complete, even under
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rather severe restrictions on G (see [6, p 191]) Since C,(3)=3<4=C,(4), part (ii)
of Lemma 3 implies that the problem of decxdmg whether C,(D)=3 is NP—comp‘ete
even if D is a directed symmetric graph.

REMARK 4. Let T be a transitive tournament on # vertices and let G be a complete
symmetric directed graph on h vertices. By Lemma 3, for every k=2

C(T) = Cy(h) = Cy(h) = C(G).

Clearly G can be obtained from 7' by adding h(h—1)/2 arcs, one at a time. If 2’
is obtained from H by adding one arc, then clearly

Ci(H) = Cu(H") = C(H)+1.

It follows that for every k,h=2 and for every m satisfying C,(h)=m=C.(h),
there is a directed graph D that satisfies x(D)=h and C,(D)=m.
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